Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells.

نویسندگان

  • Roberta Ferro De Godoy
  • Stacy Hutchens
  • Charlie Campion
  • Gordon Blunn
چکیده

While many synthetic ceramic bone graft substitutes (BGSs) have osteoconductive properties (e.g. provide a physical scaffold for osteointegration of surrounding bone tissue), certain BGSs are osteostimulative in that they actively upregulate mesenchymal stem cell proliferation and stimulate differentiation into osteoblast-like cells. The osteostimulative properties of silicate-substituted calcium phosphate with enhanced porosity (SiCaP EP) were evaluated in vitro with STRO-1+ immunoselected human bone marrow derived mesenchymal stem cells (HBMSCs). Osteostimulative materials (SiCaP) and Bioglass 45S5 (Bioglass) were also assessed as positive controls along with non-silicate substituted hydroxyapatite as a negative control. HBMSCs were also assessed on Thermanox discs cultured in basal and osteogenic media to determine when osteogenic differentiation could be significantly detected with this in vitro cell system. HBMSC viability and necrosis, total DNA content, alkaline phosphatase (ALP) expression, and osteocalcin expression were evaluated after 7, 14, 21, and 28 days. It was demonstrated that SiCaP EP is osteostimulative based on its propensity to support STRO-1+ HBMSC proliferation and ability to promote the differentiation of HBMSCs down the osteoblastic lineage from ALP-expressing, matrix-producing osteoblasts to Osteocalcin-producing pre-osteocytes without the presence of external osteogenic factors. SiCaP EP permitted greater HBMSC attachment as well as ALP and Osteocalcin expression than Bioglass which may be attributed to its microstructure and chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells

Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...

متن کامل

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells.

The aim of this research was to investigate the osteogenic differentiation potential of non-invasively obtained human stem cells on collagen nanocomposite scaffolds with in situ-grown calcium phosphate crystals. The foams had 70% porosity and pore sizes varying in the range 50-200 µm. The elastic modulus and compressive strength of the calcium phosphate containing collagen scaffolds were determ...

متن کامل

Para-Nonylphenol Impairs Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Influencing the Osteoblasts Mineralization

Objective(s)Para-Nonylphenol (p-NP) is used in many industries and our previous study showed that p-NP causes a reduction in rats bone marrow mesenchymal stem cells (MSCs) viability. The aim of this study was to investigate the effect of p-NP on osteogenic differentiation of MSCs.Materials and MethodsMSCs were isolated and expanded to 3rd passage, then cultured in DMEM supplemented with osteoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials science. Materials in medicine

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2015